skip to main content


Search for: All records

Creators/Authors contains: "Kwon, Seok Joon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract SARS-CoV-2 receptor binding domains (RBDs) interact with both the ACE2 receptor and heparan sulfate on the surface of host cells to enhance SARS-CoV-2 infection. We show that suramin, a polysulfated synthetic drug, binds to the ACE2 receptor and heparan sulfate binding sites on the RBDs of wild-type, Delta, and Omicron variants. Specifically, heparan sulfate and suramin had enhanced preferential binding for Omicron RBD, and suramin is most potent against the live SARS-CoV-2 Omicron variant (B.1.1.529) when compared to wild type and Delta (B.1.617.2) variants in vitro. These results suggest that inhibition of live virus infection occurs through dual SARS-CoV-2 targets of S-protein binding and previously reported RNA-dependent RNA polymerase inhibition and offers the possibility for this and other polysulfated molecules to be used as potential therapeutic and prophylactic options against COVID-19. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Heparan sulfate (HS) acts as a co-receptor of angiotensin-converting enzyme 2 (ACE2) by interacting with severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein (SGP) facilitating host cell entry of SARS-CoV-2 virus. Heparin, a highly sulfated version of heparan sulfate (HS), interacts with a variety of proteins playing key roles in many physiological and pathological processes. In this study, SARS-CoV-2 SGP receptor binding domain (RBD) wild type (WT), Delta and Omicron variants were expressed in Expi293F cells and used in the kinetic and structural analysis on their interactions with heparin. Surface plasmon resonance (SPR) analysis showed the binding kinetics of SGP RBD from WT and Delta variants were very similar while Omicron variant SGP showed a much higher association rate. The SGP from Delta and Omicron showed higher affinity ( K D ) to heparin than the WT SGP. Competition SPR studies using heparin oligosaccharides indicated that binding of SGP RBDs to heparin requires chain length greater than 18. Chemically modified heparin derivatives all showed reduced interactions in competition assays suggesting that all the sulfo groups in the heparin polysaccharide were critical for binding SGP RBDs with heparin. These interactions with heparin are pH sensitive. Acidic pH (pH 6.5, 5.5, 4.5) greatly increased the binding of WT and Delta SGP RBDs to heparin, while acidic pH slightly reduced the binding of Omicron SGP RBD to heparin compared to binding at pH 7.3. In contrast, basic pH (pH 8.5) greatly reduced the binding of Omicron SGP RBDs to heparin, with much less effects on WT or Delta. The pH dependence indicates different charged residues were present at the Omicron SGP-heparin interface. Detailed kinetic and structural analysis of the interactions of SARS-CoV-2 SGP RBDs with heparin provides important information for designing anti-SARS-CoV-2 molecules. 
    more » « less
  4. Abstract

    The significant performance decay in conventional graphite anodes under low‐temperature conditions is attributed to the slow diffusion of alkali metal ions, requiring new strategies to enhance the charge storage kinetics at low temperatures. Here, nitrogen (N)‐doped defective crumpled graphene (NCG) is employed as a promising anode to enable stable low‐temperature operation of alkali metal‐ion storage by exploiting the surface‐controlled charge storage mechanisms. At a low temperature of −40 °C, the NCG anodes maintain high capacities of ≈172 mAh g−1for lithium (Li)‐ion, ≈107 mAh g−1for sodium (Na)‐ion, and ≈118 mAh g−1for potassium (K)‐ion at 0.01 A g−1with outstanding rate‐capability and cycling stability. A combination of density functional theory (DFT) and electrochemical analysis further reveals the role of the N‐functional groups and defect sites in improving the utilization of the surface‐controlled charge storage mechanisms. In addition, the full cell with the NCG anode and a LiFePO4cathode shows a high capacity of ≈73 mAh g−1at 0.5 °C even at −40 °C. The results highlight the importance of utilizing the surface‐controlled charge storage mechanisms with controlled defect structures and functional groups on the carbon surface to improve the charge storage performance of alkali metal‐ion under low‐temperature conditions.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    The energy and power performance of lithium (Li)‐ion batteries is significantly reduced at low‐temperature conditions, which is mainly due to the slow diffusion of Li‐ions in graphite anode. Here, it is demonstrated that the effective utilization of the surface‐controlled charge storage mechanism through the transition from layered graphite to 3D crumpled graphene (CG) dramatically improves the Li‐ion charge storage kinetics and structural stability at low‐temperature conditions. The structure‐controlled CG anode prepared via a one‐step aerosol drying process shows a remarkable rate‐capability by delivering ≈206 mAh g–1at a high current density of 10 A g–1at room temperature. At an extremely low temperature of −40 °C, CG anode still exhibits a high capacity of ≈154 mAh g–1at 0.01 A g–1with excellent rate‐capability and cycling stability. A combination of electrochemical studies and density functional theory (DFT) reveals that the superior performance of CG anode stems from the dominant surface‐controlled charge storage mechanism at various defect sites. This study establishes the effective utilization of the surface‐controlled charge storage mechanism through structure‐controlled graphene as a promising strategy to improve the charge storage kinetics and stability under low‐temperature conditions.

     
    more » « less